Flexcell® FlexFlow™ Shear Stress Device
Catalog Page | User Manual | Brochure | Application Page

Find Distributor
Search FAQs
A parallel plate laminar shear stress device that allows the user to observe signaling responses to fluid flow (see Fig. 1 below) and/or apply strain (up to 4%) to cells before, during, or after applying a shear stress.
  • Test cell alignment response to fluid flow.
  • Culture your cells on matrix bonded rubber surfaces using StageFlexer® Membranes or matrix treated Culture Slips®.
  • Regulate shear stress using a computer-controlled peristaltic pump.
  • Use with the Osci-Flow® Flow Controller to regulate the frequency of oscillation or pulsatile flow patterns.
Read more about Applying Mechanical Load to Cells in Monolayer Culture

Read more about using Flexcell® devices in Cell Signalling (Microscope Measurements) applications


Figure 1: Schematic of fluid flow in a FlexFlow™ Shear Stress Device.

Relevant Tech Reports & Other Information
Fluid Flow System Video

FlexFlow™ Assembly
This video details how to assemble your Flexcell® FlexFlow™ device and associated tubing to run in the following configurations:
1) Flow and stretch mode with the FX-6000™ Tension System connected in line or
2) Flow only mode.
.wmv / .mp4 (SD) / .mp4 (HD)

Recent Publications with a Flexcell® Fluid Shear Product

Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways
Liao C, Cheng T, Wang S, Zhang C, Jin L, Yang Y. Bone 101:10-20, 2017. doi: 10.1016/j.bone.2017.04.003.

Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing
Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. PLoS One 12(2):e0171857, 2017. doi: 10.1371/journal.pone.0171857.

Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis
Li M, Liu X, Zhang Y, Di M, Wang H, Wang L, Chen Y, Liu X, Cao X, Zeng R, Zhang Y, Zhang M. J Mol Med (Berl) 94(4):431-41, 2016. doi: 10.1007/s00109-015-1369-9. Epub 2015 Nov 26.

Differential roles of NOX1/NOXO1 and NOX2/p47phox in mediating endothelial redox responses to oscillatory and unidirectional laminar shear stress
Siu KL, Gao L, Cai H. J Biol Chem 291(16):8653-62, 2016. doi: 10.1074/jbc.M115.713149. Epub 2016 Jan 29.

Activation of endothelial nitric oxide (eNOS) occurs through different membrane domains in endothelial cells
Tran J, Magenau A, Rodriguez M, Rentero C, Royo T, Enrich C, Thomas SR, Grewal T, Gaus K. PLoS One 11(3):e0151556, 2016. doi: 10.1371/journal.pone.0151556.

By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization
Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, Konstantopoulos K, Wang ZY, Wang P. Oncotarget 6(11):9140-59, 2015.

Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis
Li M, Liu X, Zhang Y, Di M, Wang H, Wang L, Chen Y, Liu X, Cao X, Zeng R, Zhang Y, Zhang M. J Mol Med (Berl). 2015 Nov 26. [Epub ahead of print].

Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression
Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Cell Death Dis 6:e1827, 2015. doi: 10.1038/cddis.2015.193.

Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors
Riehl BD, Lee JS, Ha L, Lim JY. J R Soc Interface 12(107), 2015. pii: 20150300. doi: 10.1098/rsif.2015.0300.

The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro
Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD. J Biol Chem 290(27):16744-58, 2015. doi: 10.1074/jbc.M114.628313.

VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction
de Castro LF, Maycas M, Bravo B, Esbrit P, Gortazar A. J Cell Physiol 2014 Aug 7. doi: 10.1002/jcp.24734.

Atheroprotective pulsatile flow induces ubiquitin-proteasome-mediated degradation of programmed cell death 4 in endothelial cells
Ge C, Song J, Chen L, Wang L, Chen Y, Liu X, Zhang Y, Zhang L, Zhang M. PLoS One 9(3):e91564, 2014. doi: 10.1371/journal.pone.0091564.

Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival
Maycas M, Ardura JA, de Castro LF, Bravo B, Gortázar AR, Esbrit P. J Bone Miner Res 2014 Dec 22. doi: 10.1002/jbmr.2439.

Estrogen receptor β and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading
Thaler JD, Achari Y, Lu T, Shrive NG, Hart DA. Biology of Sex Differences 5:14, 2014.

Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction
Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T. J Biol Chem 288(12):8168-8175, 2013. doi: 10.1074/jbc.M112.437921. Epub 2013 Jan 28.

Knee loading reduces MMP13 activity in the mouse cartilage
Hamamura K, Zhang P, Zhao L, Shim JW, Chen A, Dodge TR, Wan Q, Shih H, Na S, Lin CC, Sun HB, Yokota H. BMC Musculoskelet Disord 14(1):312, 2013. doi: 10.1186/1471-2474-14-312.

Rac1 mediates load-driven attenuation of mRNA expression of nerve growth factor β in cartilage and chondrocytes
Shim JW, Hamamura K, Chen A, Wan Q, Na S, Yokota H. J Musculoskelet Neuronal Interact 13(3):372-9, 2013.

Shear stress activates eNOS at the endothelial apical surface through β1 containing integrins and caveolae
Yang B, Rizzo V. Cell Mol Bioeng 6(3):346-354, 2013.

Click here to view our publication database.