Flexcell® Tension Systems are patented, computer-regulated bioreactors that apply cyclic or static strain to cells cultured in vitro.
We designed Flexcell® Tension Systems to help investigators analyze biochemical changes in response to tensile load on a variety of cell culture applications, including muscle, lung, heart, vascular vessels, skin, tendon, ligament, cartilage, and bone.
Our Tension Systems work with UniFlex® (Uniaxial strain), BioFlex®, HT BioFlex® (Equibiaxial strain), Tissue Train® and CellSoft® BioFlex® culture plates.
Flexcell’s® Compression System regulates positive air pressure to compress tissue samples or 3D cell cultures in vitro. The FX-5000C™ Compression System compresses samples between a piston and stationary platen using our BioPress™ culture plates. It can load up to 14 lbs. of applied force. Using the FX-5000C™ Compression System, researchers can observe biochemical changes and cell signaling in vitro that mimics in vivo conditions.
The Streamer® is a fluid shear stress device allowing users to regulate fluid shear stress to cells in culture with laminar, pulsatile, or oscillating flow. Flexcell’s® Streamer® System uses a computer-controlled peristaltic pump. Together with the Osci-Flow® Flow Controller, researchers can regulate the frequency of oscillation or pulsatile patterns based on shear stress level applied from 0-35 dynes/cm2. Flexcell’s® Fluid Shear System is designed to allow users to observe biochemical changes, cell migration and signaling under fluid shear load in vitro.
Cells Sense Soft!
Introducing our new line of soft substrate disposables! CellSoft® culture ware is pre-coated in a specially formulated silicone elastomer with moduli stiffness ranges from 1.0 - 60 kPa. CellSoft® soft substrate culture ware comes untreated or with covalently-bonded proteins to improve cell attachment. CellSoft® matches the stiffness of native tissues to the growth surface you want to use to grow and test your cell lines!
At Flexcell® International Corporation, we design our dynamic cell stretching bioreactors, accessories, and disposables to apply mechanical load (i.e., tension, compression, and fluid flow) to cells on 2D and 3D culture in vitro. Researchers can observe cell migration, proliferation, metabolism, gene and protein expression, cell signaling pathways, drug responses, and create 3D cell-seeded collagen constructs for tissue engineering. The cell stretching bioreactor systems, accessories, and disposables developed by Flexcell® work together to meet the needs of researchers across the globe. Whether your research requires reproducible mechanical loading with easy data collection, or you need the most optimal in vivo-like environment for in vitro cell culture, we have a cell stretching bioreactor system for you.
Flexcell® takes pride in the quality of our products and services we provide to our customers. We welcome you to our site to learn more about how you can expand your research capabilities. Our products are used in more than 1,500 laboratories worldwide and have been cited in over 6,7000 research publications!
Our full range of tissue engineering accessories and disposables complement our cell stretching bioreactors to aid in the construction of 3D cell-seeded tissue constructs with different shape sizes.
Single-well devices designed to allow the user to observe signaling responses to strain in real time on a microscope stage.
Tension Application:
The StageFlexer® is designed to strain cells in monolayer while viewing the cellular activity with an upright microscope. The Inverted StageFlexer® device allows observation with an inverted microscope.
Compression Application:
The StagePresser™ is designed to compress a single tissue sample or cell-seeded construct in 3D culture while viewing cellular activity under a microscope.
Fluid Shear Application:
The FlexFlow™ is a parallel plate laminar flow device designed to apply fluid shear stress and/or cyclic strain to cells in culture while providing a means for viewing cell activity under a microscope in real time.
Flexcell® has designed a full line of tissue engineering accessories to aid in load application, cell seeding placement plus biologicals to create hydrogel matrices and scaffolds.
Monolayer (2D) Cell Culture:
BioFlex® Cell Seeders™, HT BioFlex® CellSeeders
Cell Seeders™ allow users to plate cells in the central region of the culture plates.
Tissue Constructs and (3D) Cell Culture:
Tissue Train® Trough Loaders™ are special molds for creating various shaped (Linear and Circular shapes) 3D cell-seeded gel constructs with the Tissue Train® Culture System.
Accessories by Strain Application:
Equibiaxial load: BioFlex® Baseplate Kit, BioFlex® Cylindrical 6-well Loading Stations, HT BioFlex® Baseplate Kit, HT BioFlex® Cylindrical 24-well Loading Stations, Flex Jr™ Single BioFlex® Baseplate Kit , Tissue Train® (3D Cell Culture) Baseplate Kit, Tissue Train® Trough Loaders™ (3D Cell Culture)
BioFlex® Cylindrical Loading Stations™ help apply equibiaxial strain on cell culture plate membrane.
Uniaxial load: Uniaxial® Baseplate Kit, Arctangle® Loading Stations™, Tissue Train® (Linear) Baseplate Kits, Tissue Train® Trough Loaders™ (Linear)
Arctangle® Loading Stations™ help apply uniaxial strain on cell culture plate membrane.
Whether you want to stretch cells in Monolayer (2D) or create Tissue Constructs in (3D) cell culture, we have the disposable solution to meet your needs!
Monolayer (2D) Culture Plates:
BioFlex®, HT BioFlex®, UniFlex®, BioPress™, CellSoft® Soft Substrates Culture Plates
Tissue Constructs and (3D) Culture Plates:
Tissue Train® Culture Plates (Circular and Linear shapes) are available with either Cyrex mesh or foam anchors to attach 3D constructs for stretch
Culture Plate by Strain Application:
Equibiaxial load: BioFlex®, HT BioFlex®, CellSoft®, Tissue Train® Circular Culture Plates
Uniaxial load: UniFlex®, Tissue Train® Linear Culture Plates
The rubber membranes in our culture plates are optically clear for direct viewing of cells.
Our specially designed flexible bottomed 6-well and 24-well BioFlex® culture plates are offered in a range of protein coatings: Amino, Collagen (Type I and IV), Elastin, Pronectin (RGD), Laminin (YIGSR) that save the researcher time and money. Our culture plates also come Untreated for use with a lab's own custom ECM coating protocol.
For more than 30 years, Flexcell® has specialized in designing, developing, and manufacturing products using unique vacuum pressure technology to stretch cells in culture. We have comprehensive knowledge of and experience with developing and manufacturing commercially-viable cell stretching solutions for researchers invested in cellular mechanics, cytomechanics, tissue engineering, drug discovery, orthopaedics, cardiovascular, and pulmonary research, to name a few.
Our unique, pneumatic cell stretching bioreactors use vacuum pressure to enhance your ability to research cellular mechanics by creating in vitro models and 3D tissue constructs within the most optimal simulated in vivo environment for cell proliferation and growth.
Using a pneumatic system of positive and negative pressures instead of a motor-driven system, allows researchers to apply sufficient strain without potential interference from electronic or magnetic fields and vibration. Our Flexcell® cell stretching bioreactors allow researchers to accommodate more growth surface area because the pneumatic vacuum system allows for equal strain across the membrane. Our specialized flexible bottom culture plates are pre-sterilized and pre-coated in a variety of covalently bonded matrix coatings and stiffnesses.
Everyday movement and natural processes exert physical forces (i.e., tension, compression, or fluid shear) on cells and tissues within the body. Cells detect and respond to these mechanical stimulations via various biochemical pathways termed mechanotransduction. Understanding the various signaling mediators, proteins, genes, and other factors involved in mechanotransduction is key to developing new therapies and drugs. The field of mechanobiology studies how these physical factors impact the process of mechanotransduction at the molecular, cellular, and tissue levels.
At Flexcell® International Corporation, we understand that our commitment to the highest quality products and customer service depend on our ability to take part in research and development continuously. We invite you to read more about our ongoing research and development on cell stretching bioreactors in tissue engineering, cellular mechanics, gene and protein expression, cytomechanics, drug discovery, orthopedics, cardiovascular, and pulmonary research.