Du GL, Chen WY, Li XN, He R, Feng PF. Induction of MMP‑1 and ‑3 by cyclical mechanical stretch is mediated by IL‑6 in cultured fibroblasts of keratoconus. Mol Med Rep 15(6):3885-3892, 2017.
Feng P, Li X, Chen W, Liu C, Rong S, Wang X, Du G. Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro. Biomed Eng Online 15(1):63, 2016.
Fujikura H, Seko Y, Tokoro T, Mochizuki M, Shimokawa H. Involvement of mechanical stretch in the gelatinolytic activity of the fibrous sclera of chicks, in vitro. Japanese Journal of Ophthalmology 46(1):24-30, 2002.
Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor- and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009.
Kinoshita H, Suzuma K, Maki T, Maekawa Y, Matsumoto M, Kusano M, Uematsu M, Kitaoka T. Cyclic stretch and hypertension increase retinal succinate: potential mechanisms for exacerbation of ocular neovascularization by mechanical stress. Invest Ophthalmol Vis Sci 55(7):4320-6, 2014.
Kirwan RP, Crean JK, Fenerty CH, Clark AF, O'Brien CJ. Effect of cyclical mechanical stretch and exogenous transforming growth factor-1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J Glaucoma 13(4):327-334, 2004.
Kirwan RP, Fenerty CH, Crean J, Wordinger RJ, Clark AF, O'Brien CJ. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro. Mol Vis 11:798-810, 2005.
Qu J, Chen H, Zhu L, Ambalavanan N, Girkin CA, Murphy-Ullrich JE, Downs JC, Zhou Y. High-magnitude and/or high-frequency mechanical strain promotes peripapillary scleral myofibroblast differentiation. Invest Ophthalmol Vis Sci 56(13):7821-30, 2015.
Quill B, Docherty NG, Clark AF, O'Brien CJ. The effect of graded cyclic stretching on extracellular matrix-related gene expression profiles in cultured primary human lamina cribrosa cells. Invest Ophthalmol Vis Sci 52(3):1908-1915, 2011.
Rogers R, Dharsee M, Ackloo S, Flanagan JG. Proteomics analyses of activated human optic nerve head lamina cribrosa cells following biomechanical strain. Invest Ophthalmol Vis Sci 53(7):3806-16, 2912.
Shelton L, Rada JS. Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts. Exp Eye Res 84(2):314-322, 2007.
Suzuma I, Hata Y, Clermont A, Pokras F, Rook SL, Suzuma K, Feener EP, Aiello L. Cyclic stretch and hypertension induce retinal expression of vascular endothelial growth factor and vascular endothelial growth factor receptor–2: potential mechanisms for exacerbation of diabetic retinopathy by hypertension. Diabetes 50:444–454, 2001.
Suzuma I, Suzuma K, Takagi H, Kaneto H, Aiello L, Honda Y. 1P-0151 Cyclic stretch induced reactive oxygen species (ROS) enhances apoptosis in porcine retinal pericytes (PRPC) through JNK/SAPK activation [abstract]. Atherosclerosis Supplements 4(2):53, 2003.
Suzuma I, Suzuma K, Ueki K, Hata Y, Feener EP, King GL, Aiello LP. Stretch-induced retinal vascular endothelial growth factor expression is mediated by phosphatidylinositol 3-kinase and protein kinase C (PKC)- but not by stretch-induced ERK1/2, Akt, Ras, or classical/novel PKC pathways. J Biol Chem 277(2):1047-1057, 2002.
Wang G, Chen W. Effects of mechanical stimulation on viscoelasticity of rabbit scleral fibroblasts after posterior scleral reinforcement. Exp Biol Med 237(10):1150-1154, 2012.
Wang G, Hao S, Deng A. Effects of mechanical stimulation on TGF-β1 and bFGF expression of scleral fibroblasts after posterior sclera reinforcement. Complex Medical Engineering (CME), 2013 ICME International Conference on, 399-402, 2013.
Zhang W, Chen J, Backman LJ, Malm AD, Danielson P. Surface topography and mechanical strain promote keratocyte phenotype and extracellular matrix formation in a biomimetic 3D corneal model. Adv Healthc Mater 6(5), 2017.
Gao M, Wu S, Ji J, Zhang J, Liu Q, Yue Y, Liu L, Liu X, Liu W. The influence of actin depolymerization induced by Cytochalasin D and mechanical stretch on interleukin-8 expression and JNK phosphorylation levels in human retinal pigment epithelial cells. BMC Ophthalmol 17(1):43, 2017.
Oh JY, Jung KA, Kim MK, Wee WR, Lee JH. Effect of mechanical strain on human limbal epithelial cells in vitro. Curr Eye Res 31(12):1015-20, 2006.
Seko Y, Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci 40:3287–3291, 1999.
Aga M, Bradley JM, Keller KE, Kelley MJ, Acott TS. Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. Invest Ophthalmol Vis Sci 49(12):5353-5365, 2008.
Baetz NW, Hoffman EA, Yool AJ, Stamer WD. Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Exp Eye Res 89(1):95-100, 2009.
Chow J, Liton PB, Luna C, Wong F, Gonzalez P. Effect of cellular senescence on the P2Y-receptor mediated calcium response in trabecular meshwork cells. Mol Vis 13:1926-1933, 2007.
Chudgar SM, Deng P, Maddala R, Epstein DL, Rao PV. Regulation of connective tissue growth factor expression in the aqueous humor outflow pathway. Mol Vis 12:1117-1126, 2006.
Elliott MH, Ashpole NE, Gu X, Herrnberger L, McClellan ME, Griffith GL, Reagan AM, Boyce TM, Tanito M, Tamm ER, Stamer WD. Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Sci Rep 6:37127, 2016.
Iyer P, Lalane R 3rd, Morris C, Challa P, Vann R, Rao PV. Autotaxin-lysophosphatidic Acid axis is a novel molecular target for lowering intraocular pressure. PLoS One 7(8):e42627, 2012.
Liton PB, Liu X, Challa P, Epstein DL, Gonzalez P. Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress. J Cell Physiol 205(3):364-71, 2005.
Liton PB, Li G, Luna C, Gonzalez P, Epstein DL. Cross-talk between TGF-beta1 and IL-6 in human trabecular meshwork cells. Mol Vis 15:326-334, 2009.
Liu KC, Li G, Overby DR, Stamer WD. Role of VEGF in conventional outflow homeostasis. Investigative Ophthalmology & Visual Science 55(13):2910, 2014.
Luna C, Li G, Liton PB, Epstein DL, Gonzalez P. Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis 15:534-544, 2009.
Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 226(5):1407-1414, 2011.
Muralidharan AR, Maddala R, Skiba NP, Rao PV. Growth differentiation factor-15-induced contractile activity and extracellular matrix production in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 57(15):6482-6495, 2016.
Porter KM, Jeyabalan N, Liton PB. MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch. Biochim Biophys Acta 1843(6):1054-62, 2014.
Reina-Torres E, Wen JC, Liu KC, Li G, Sherwood JM, Chang JY, Challa P, Flügel-Koch CM, Stamer WD, Allingham RR, Overby DR. VEGF as a paracrine regulator of conventional outflow facility. Invest Ophthalmol Vis Sci 58(3):1899-1908, 2017.
Ryskamp DA, Frye AM, Phuong TT, Yarishkin O, Jo AO, Xu Y, Lakk M, Iuso A, Redmon SN, Ambati B, Hageman G, Prestwich GD, Torrejon KY, Križaj D. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep 6:30583, 2016.
Wu J, Li G, Luna C, Spasojevic I, Epstein DL, Gonzalez P. Endogenous production of extracellular adenosine by trabecular meshwork cells: potential role in outflow regulation. Invest Ophthalmol Vis Sci 53(11):7142-8, 2012.
Wu S, Lu Q, Wang N, Zhang J, Liu Q, Gao M, Chen J, Liu W, Xu L. Cyclic stretch induced-retinal pigment epithelial cell apoptosis and cytokine changes. BMC Ophthalmol 17(1):208, 2017. doi: 10.1186/s12886-017-0606-0.
WuDunn D. The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells. Curr Eye Res 22(5):394-397, 2001.