Microscopy

About our Microscopy Devices

Single-well devices designed to allow the user to observe signaling responses to strain in real time on a microscope stage.

Tension Application:

The StageFlexer® is designed to strain cells in monolayer while viewing the cellular activity with an upright microscope. The Inverted StageFlexer® device allows observation with an inverted microscope.

Compression Application:

The StagePresser™ is designed to compress a single tissue sample or cell-seeded construct in 3D culture while viewing cellular activity under a microscope.

Fluid Shear Application:

The FlexFlow™ is a parallel plate laminar flow device designed to apply fluid shear stress and/or cyclic strain to cells in culture while providing a means for viewing cell activity under a microscope in real time.

Schedule Your Complimentary Free Trial

Schedule Now

What our customers say

“Cells were seeded on flexible silicone-bottom plates (Flexcell® Tension System) at a density of 3 × 105 cells per well. Pathologically elevated cyclic stretch increased the secretion of miR-27a, which was transferred from VSMCs to ECs via the VSMC-MPs, subsequently targeted GRK6, and induced EC proliferation. Locally decreasing miR-27a could be a novel therapeutic approach to attenuate the abnormal EC proliferation in hypertension.”

Dr. Wang, Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, P.R. China

View Publication

“A Flexcell® Compression Plus system was used to enable longer-term compression of multicellular aggregates (MCAs) in custom-designed hydrogel carriers. Results show changes in the expression of genes related to epithelial-mesenchymal transition as well as altered dispersal of compressed MCAs on collagen gels.”

Dr. Klymenko, Department of Biological Sciences, University of Notre Dame, USA

View Publication

“The study of fluid shear as a driving force for cell migration, i.e., "flowtaxis", and investigation of molecular mechanosensors governing such behavior (e.g., ROCK as tested in this study) may provide new and improved insights into the fundamental understanding of cell migration-based homeostasis. The flow regimens could be controlled by the peristaltic pump and the Osci-Flow device, which were governed by StreamSoft v. 4.1 software provided by Flexcell® International Corp.”

Dr. Riehl, Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, USA

View Publication

Our Commitment to Ongoing Research

At Flexcell® International Corporation, we understand that our commitment to the highest quality products and customer service depend on our ability to take part in research and development continuously. We invite you to read more about our ongoing research and development on cell stretching bioreactors in tissue engineering, cellular mechanics, gene and protein expression, cytomechanics, drug discovery, orthopedics, cardiovascular, and pulmonary research.

Ready to start flexing?

View our products